Genome segmentation using piecewise constant intensity models and reversible jump MCMC
نویسندگان
چکیده
The existence of whole genome sequences makes it possible to search for global structure in the genome. We consider modeling the occurrence frequencies of discrete patterns (such as starting points of ORFs or other interesting phenomena) along the genome. We use piecewise constant intensity models with varying number of pieces, and show how a reversible jump Markov Chain Monte Carlo (RJMCMC) method can be used to obtain a posteriori distribution on the intensity of the patterns along the genome. We apply the method to modeling the occurrence of ORFs in the human genome. The results show that the chromosomes consist of 5-35 clearly distinct segments, and that the posteriori number and length of the segments shows significant variation. On the other hand, for the yeast genome the intensity of ORFs is nearly constant.
منابع مشابه
Dynamic Frailty and Change Point Models for Recurrent Events Data
Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...
متن کاملBayesian curve fitting using MCMC with applications to signal segmentation
We propose some Bayesian methods to address the problem of fitting a signal modeled by a sequence of piecewise constant linear (in the parameters) regression models, for example, autoregressive or Volterra models. A joint prior distribution is set up over the number of the changepoints/knots, their positions, and over the orders of the linear regression models within each segment if these are u...
متن کاملA comparison of reversible jump MCMC algorithms for DNA sequence segmentation using hidden Markov models
This paper describes a Bayesian approach to determining the number of hidden states in a hidden Markov model (HMM) via reversible jump Markov chain Monte Carlo (MCMC) methods. Acceptance rates for these algorithms can be quite low, resulting in slow exploration of the posterior distribution. We consider a variety of reversible jump strategies which allow inferences to be made in discretely obse...
متن کاملDynamic Frailty and Change Point Models for Recurrent Events Data
We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity function. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline intensity uses an unknown grid for the piecewise constant functio...
متن کاملOn the automatic choice of reversible jumps
The major implementational problem for reversible jump MCMC is that there is commonly no natural way to choose jump proposals since there is no Euclidean structure to guide our choice. In this paper we will consider a mechanism for guiding the proposal choice by analysis of acceptance probabilities for jumps. Essentially the method involves an approximation for the acceptance probability around...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 18 Suppl 2 شماره
صفحات -
تاریخ انتشار 2002